skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hart, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider hyper-differential sensitivity analysis (HDSA) of nonlinear Bayesian inverse problems governed by partialdifferential equations (PDEs) with infinite-dimensional parameters. In previous works, HDSA has been used to assessthe sensitivity of the solution of deterministic inverse problems to additional model uncertainties and also different types of measurement data. In the present work, we extend HDSA to the class of Bayesian inverse problems governed by PDEs. The focus is on assessing the sensitivity of certain key quantities derived from the posterior distribution. Specifically, we focus on analyzing the sensitivity of the MAP point and the Bayes risk and make full use of the information embedded in the Bayesian inverse problem. After establishing our mathematical framework for HDSA of Bayesian inverse problems, we present a detailed computational approach for computing the proposed HDSA indices. We examine the effectiveness of the proposed approach on an inverse problem governed by a PDE modeling heat conduction. 
    more » « less
  2. Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model which must be estimated. Although the Bayesian formulation is attractive for such problems, computational cost and high dimensionality frequently prohibit a thorough exploration of the parametric uncertainty. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to approximate properties of the Bayesian posterior distribution. For instance, the maximum a posteriori probability (MAP) and the Laplace approximation of the posterior covariance can be computed. In this article, we propose using hyperdifferential sensitivity analysis (HDSA) to assess the sensitivity of the MAP point to changes in the auxiliary parameters. We establish an interpretation of HDSA as correlations in the posterior distribution. Our proposed framework is demonstrated on the inversion of bedrock topography for the Greenland ice-sheet with uncertainties arising from the basal friction coefficient and climate forcing (ice accumulation rate). 
    more » « less
  3. This paper addresses trajectory optimization for hypersonic vehicles under atmospheric and aerodynamic uncertainties using techniques from desensitized optimal control (DOC), wherein open-loop optimal controls are obtained by minimizing the sum of the standard objective function and a first-order penalty on trajectory variations due to parametric uncertainty. The proposed approach is demonstrated via numerical simulations of a minimum-final-time Earth reentry trajectory for an X-33 vehicle with an uncertain atmospheric scale height and drag coefficient. Monte Carlo simulations indicate that dispersions in the final position footprint and the final energy can be significantly reduced without closed-loop control and with little tradeoff in the performance metric set for the trajectory. 
    more » « less
  4. Abstract High fidelity models used in many science and engineering applications couple multiple physical states and parameters. Inverse problems arise when a model parameter cannot be determined directly, but rather is estimated using (typically sparse and noisy) measurements of the states. The data is usually not sufficient to simultaneously inform all of the parameters. Consequently, the governing model typically contains parameters which are uncertain but must be specified for a complete model characterization necessary to invert for the parameters of interest. We refer to the combination of the additional model parameters (those which are not inverted for) and the measured data states as the ‘complementary parameters’. We seek to quantify the relative importance of these complementary parameters to the solution of the inverse problem. To address this, we present a framework based on hyper-differential sensitivity analysis (HDSA). HDSA computes the derivative of the solution of an inverse problem with respect to complementary parameters. We present a mathematical framework for HDSA in large-scale PDE-constrained inverse problems and show how HDSA can be interpreted to give insight about the inverse problem. We demonstrate the effectiveness of the method on an inverse problem by estimating a permeability field, using pressure and concentration measurements, in a porous medium flow application with uncertainty in the boundary conditions, source injection, and diffusion coefficient. 
    more » « less
  5. null (Ed.)